Moment problems and orthogonal polynomials
نویسنده
چکیده
In 1894 Thomas Jan Stieltjes (1856-1894) published an extremely influential paper: Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, 8, 1–122; 9, 5–47. He introduced what is now known as the Stieltjes integral with respect to an increasing function φ, the latter describing a distribution of mass (a measure μ) via the convention that the mass in an interval ]a, b] is μ(]a, b]) = φ(b) − φ(a). This integral was used to solve the following problem which he called the moment problem:
منابع مشابه
The indeterminate moment problem for the q-Meixner polynomials
For a class of orthogonal polynomials related to the q-Meixner polynomials corresponding to an indeterminate moment problem we give a one-parameter family of orthogonality measures. For these measures we complement the orthogonal polynomials to an orthogonal basis for the corresponding weighted L-space explicitly. The result is proved in two ways; by a spectral decomposition of a suitable opera...
متن کاملHamburger Moment Problems and Orthogonal Polynomials
We consider a sequence of orthogonal polynomials given by the classical three term recurrence relation. We address the problem of deciding the determinacy or indeterminacy of the associated Hamburger moment problem on the basis of the behavior of the coefficients in the three term recurrence relation. Comparisons are made with other criteria in the literature. The efficacy of the criteria obtai...
متن کاملSome new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کامل2 Rectangular Matrix Orthogonal Polynomials
Classical orthogonal polynomials and matrix polynomials being orthogonal with respect to some Hermitean positive deenite matrix of measures share several properties , e.g., three term recurrencies, Christooel{Darboux formulas; there are connections to the triangular decomposition of the (inverse) moment matrix and to eigenvalue{problems for the banded matrix of recurrence coeecients. Also, a co...
متن کاملSome cubic birth and death processes and their related orthogonal polynomials
The orthogonal polynomials with recurrence relation (λn + μn − z)Fn(z) = μn+1 Fn+1(z) + λn−1 Fn−1(z) with two kinds of cubic transition rates λn and μn, corresponding to indeterminate Stieltjes moment problems, are analyzed. We derive generating functions for these two classes of polynomials, which enable us to compute their Nevanlinna matrices. We discuss the asymptotics of the Nevanlinna matr...
متن کاملGeneralizations of orthogonal polynomials
We give a survey of recent generalizations for orthogonal polynomials that were recently obtained. It concerns not only multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, or multipole (orthogonal rational functions) variants of the classical polynomials but also extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations...
متن کامل